TABLE	II
-------	----

THERMOI	YNAMIC	FUNCTIONS	FOR DEC	ABORANE,	$B_{10}H_{14}$
<i>T</i> , °K.	Cp cal./ mole/°K.	S ⁰ cal./°K.	$H^{\theta} - H_0^{\theta}$ cal./mole	$\frac{(H^{\circ} - H^{\circ})}{H^{\circ}_{\phi}}/T$	$(F^0 - H^0_0) T$
14	0.810	0.270°	2.835*	0.203	0.067
2 5	3.350	1.352	24.714	0.989	0.363
5 0	8.135	5.381	176.86	3.537	2.207
75	11.135	9.300	421.08	5.614	3.686
100	13.325	12.799	726.47	7.265	5.534
125	16.30	16.074	1094.8	8.758	7.316
150	20.03	19.365	1547.5	10.317	9.048
175	24.62	22.790	2104.3	12.025	10.765
200	29.82	26.414	2784.3	13.922	12.423
225	35.30	30.241	3597.9	15.991	14.250
250	41.02	34.254	4551.3	18.205	16.049
275	47.13	38.448	5652.7	20.555	17.893
298.16	52.42	42.475	6806.9	22.830	19.645
300	52.78	42.798	6903.7	23.012	19.786
^a Debye extrapolation: $C_p = 2D (145/T)$.					

Since the above equation fits the experimental data to within 0.5% throughout most of the range, only that portion under the hump is shown (dotted line) in the figure. The area between the experimental curve and the Debye-Einstein curve correspond to an entropy of 0.210 e.u.

Standard thermodynamic functions have been calculated from the experimental data and are given at integral temperature values in Table II. The entropy at 298.16 is 42.48 ± 0.1 e.u.

Summary

The heat capacities of decaborane have been measured in the range 14 to 305°K. and the derived thermodynamic functions have been calculated and tabulated at integral values of the temperature over this range. The entropy at 298.16° K. is 42.48 ± 0.1 e.u.

COLUMBUS 10, OHIO

RECEIVED JULY 5, 1950

[CONTRIBUTION FROM THE CRYOGENIC LABORATORY AND THE DEPARTMENT OF CHEMISTRY, THE OHIO STATE UNIVERSITY]

Low Temperature Heat Capacities of Inorganic Solids. VII. Heat Capacity and Thermodynamic Functions of Li₂O. Thermodynamics of the Li₂O-H₂O System¹

BY HERRICK L. JOHNSTON AND THOMAS W. BAUER

Introduction

No previous measurements of the heat capacity of lithium oxide have been reported in the literature.

Apparatus and Material

The calorimetric data were obtained with our calorimeter No. 3, whose construction and operation have been de-

ter No. 3, whose construction and operation have been de-scribed in a previous paper² from this Laboratory. Relatively pure lithium hydroxide, obtained from the Metalloy Corporation of Minneapolis, was purified by re-crystallization from triply distilled water. The LiOH-H₂O formed was decomposed to Li₂O in a nickel boat, in a stream of purified hydrogen gas, first at about 150° to LiOH and then at about 800°. Difficulty was experienced due to the extreme wetting properties of the fused LiOH. due to the extreme wetting properties of the fused LiOH. The fused material showed a tendency to creep out of the boat and attacked the monel furnace tube even in a reducing atmosphere of hydrogen. Titration with normal HCl gave a purity of 99.4% when all the base present was calculated as Li₂O. A spectroscopic analysis of the purified sample showed that some calcium was present as an impurity and that faint traces of less than 0.001% aluminum, magnesium, silicon, sodium and nickel were also present

The lithium oxide was further purified by heat treatment in a nickel crucible at temperatures ranging from 1000 to 1300°. The crucible was supported inside a water-cooled Pyrex condenser through which hydrogen circulated, and was heated by induction heating.

Heating the sample for 3 to 5 hours increased its purity to $99.90 \pm 0.10\%$, on the basis of an hydrochloric acid titration of Li₂O; further heating did not change the purity. Nickel contamination did not rise above 0.001%. We assumed that the 0.50% increase in purity must have represented removal of the last traces of water, and pos-sibly CO₂, and that any remaining impurity must be CaO. After correcting for CaO, on the basis of the 99.90% Li₂O

(1) This work was supported in part by the Office of Naval Research under contract with The Ohio State University Research Foundation.

(2) H. L. Johnston and E. C. Kerr, THIS JOURNAL, 72, 4733 (1950).

titration, the composition of the final purified sample was 99.74% Li₂O, the remaining 0.26% being CaO.

The measured values of the heat capacity were corrected for the small amount of CaO present by use of the data of Nernst and Schwers² and of Parks and Kelley.⁴ This correction was less than 0.07%.

Results

Measurements were made with the calorimeter filled with 43.088 g. (1.4420 moles) of Li₂O and with 0.112 g. (0.0020 mole) of CaO.

The experimental values of the molal heat capacity are given in Table I in defined thermochemical calories.⁵ The heat capacity of the empty calorimeter amounts to almost 90% of the total heat capacity below 30°K.

Smoothed values of the thermodynamic functions obtained by graphical means from the heat capacity are entered in Table II. The smoothed values are accurate to within 0.2% above 45°K., but might be in error as much as 2% at 20°K. The values at the lowest temperatures are less accurate than other data6 obtained at this Laboratory, due to the very low heat capacity of Li₂O in this region. The molal entropy of Li2O at 298.16° K. is 9.06 ± 0.03 e.u., with only 0.003 e.u. contributed by a Debye extrapolation ($\theta = 559$) below 16°K.

Thermodynamic Calculations

Third Law Check on the Entropies Through the Dissociation Pressure of LiOH.-Johnston⁷

- (3) W. Nernst and F. Schwers, Sitzb. kgl. preuss. Akad. Wiss., 355 (1914).
 - (4) G. S. Parks and K. K. Kelley, J. Phys. Chem., 30, 47 (1926).
 - (5) E. F. Mueller and F. D. Rossini, Am. J. Phys., 12, 1 (1944).
 (6) T. W. Bauer, H. L. Johnston and E. C. Kerr, THIS JOURNAL.
- 72. 5174 (1950).
 - (7) J. Johnston, Z. physik. Chem., 62, 339 (1906).

HEAT CAPACITY OF 1.4420 MOLES OF LITHIUM OXIDE, Li₂O. MOLECULAR WEIGHT 29.880

°K.	∆ <i>T</i> , °K.	Cp. cal.(deg. mole) ⁻¹	^T av °K.	Δ <i>T</i> , ° K .	Cp. cal.(deg. mole) ⁻¹
17.06	2.699	0.0198	127.38	9.896	4.326
20.68	1.685	.0288	137.49	10.381	5.006
23.03	1.673	.0316	146.97	9.109	5.649
25.01	1.560	.0358	155.73	8.410	6.222
27.23	2.303	. 0448	164.96	10.015	6.805
29.87	2.739	.0531	174,90	9.022	7.415
32.81	3.115	.0670	184.52	9.574	8.029
36.59	4.476	.102	194.17	9.526	8.596
41.04	4.393	. 154	204.23	10.499	9.110
46.44	6.363	.240	208.11	8. 83 3	9.303
52.12	4.976	.365	214.43	9.677	9.584
58.05	6.849	. 522	227.44	11.294	10.254
64.51	6.064	.715	238.53	10.467	10.729
68.01	6.723	. 838	248.71	9.792	11.149
74.26	5.903	1.086	258.38	9.472	11.542
81.75	6.119	1.448	268.63	10.454	11.954
88.90	8.188	1.830	279.01	9.846	12.313
97.03	9.236	2.316	288.74	9.325	12.655
107.30	11.177	2.962	298.89	10.389	12.938
117.64	9.520	3.669			

TABLE II

MOLAL HEAT CAPACITY AND DERIVED THERMODYNAMIC FUNCTIONS OF LITHIUM OXIDE, Li₂O

			$(H^{0} -$		$-(F^{0} -$
T.	$C^{o_{\mathbf{p}}}$	$H^0 - H^0_0$.	$H_0^0)/T$	S0	$H_{0}^{0})/T$
°К.	cai./deg.	cal.	cal./deg.	5°, e. u.	cal./deg.
16	0.009	0.044	0.003	0.003	0.000
25	. 024	0.206	. 008	.008	. 000
5 0	.316	3.5 66	.071	, 090	.019
75	1.119	20.303	.271	.372	. 101
100	2.497	64.289	.643	.868	.225
125	4.157	147.25	1.173	1. 6 60	. 482
150	5.844	272.25	1.815	2.644	. 829
175	7.439	438.51	2 , 506	3.589	1.083
2 0 0	8.892	643.24	3.216	4.680	1.464
225	10.120	881.45	3.918	5.801	1.883
2 5 0	11.216	1148.5	4.594	6.925	2.331
275	12.173	1441.1	5.241	8.040	2.799
298.16	12.927	1732.2	5.810	9.056	3.246
300	12.980	1756.0	5.853	9.135	3. 28 2

measured dissociation pressures of LiOH between 500 and 924°. A least squares fit of his data yields

$$\log p = 1.214415 + 1.216868(1000/T) + 3.204257(1000/T)^2 \quad (1)$$

where p is in mm. and T is the absolute temperature. Differentiation of this equation yields, for the heat of dissociation in calories,

$$AH^{0} = 29,323(1000/T) - 5568 \tag{2}$$

Equations 1 and 2 do not apply below 500° . However, we have derived a general expression for ΔH , for the reaction

 $2\text{LiOH}(\text{crystalline}) = \text{Li}_2O(\text{crystalline}) + H_2O(\text{gas})$ (3)

by the method of Shomate⁸ and obtained an equation applicable between 1000° and room temperagure. This equation is

 $\Delta H^0 = 35,186 - 0.501T - 0.010835T^2 - 0.010835T^2 - 0.010835T^2 - 0.0000835T^2 - 0.000085T^2 - 0.00085T^2 - 0.00085T^$

373.56(1000/T) (4)

To obtain equation 4, we have employed de Forcrand's⁹ calorimetric values for the heats of solution of both LiOH and Li₂O, which we have corrected to 25° and to the currently accepted atomic weight of lithium. The molal heat of vaporization of water at 25° was taken as 10,520 \pm 3 cal.¹⁰ and the ΔC_p of the dissociation reaction at 25° as -2.76 cal./deg. The latter is based on our data⁶ for the heat capacities of LiOH and of Li₂O and on Gordon's¹¹ spectroscopic value for steam. In applying Shomate's method, equation 2 was used to get preliminary values of ΔH^0 at temperatures above 500°.

From equation 4, we have derived the useful relationships

 $\Delta C_{\rm p}^{\rm 0} = -0.501 - 0.02167T + 0.37356(1000/T)^2 \quad (5)$ $\Delta F^{\rm 0}/T = 35,186/T + 1.1536 \log T + 0.010835 T + 0.18678(1000/T)^2 + I \quad (6)$

and evaluated the integration constant I from Johnston's' dissociation pressure points above 700°. The calculation yielded an average value of I of -45.758.

By combining equations 4 and 6 with the relation of entropy to heat content and free energy, we obtain

2LiOH(crystalline) = $\text{Li}_2\text{O}(\text{crystalline}) + \text{H}_2\text{O}(\text{gas})$ $\Delta H_{25}^0 = 32,821 \pm 113 \text{ cal.}$

 $\Delta F_{25}^0 = 22,731$

 $\Delta S_{25}^0 = 33.85 \text{ e.u.}$

The value of ΔS^0 at 25° was also computed, by use of the Third Law of Thermodynamics, from our calorimetric entropies of Li₂O (9.06 e.u.) and of LiOH⁶ (10.23 e.u.) and from Gordon's¹¹ spectroscopic value for water vapor (45.10 e.u.). This third law calculation yielded

$$S\Delta_{25}^0 = 33.70 \pm 0.12$$
 e.u.

a value which is in close agreement with that computed from the dissociation equilibrium. The excellent agreement is much closer than could be anticipated in view of the 500° extrapolation of dissociation heat, and establishes the validity of the ordinary use of the Third Law in application to both Li_2O and LiOH. This result confirms our previous conclusion regarding $LiOH^6$ and is consistent with the X-ray diffraction data for Li_2O ,¹² which indicate an ionic lattice of the fluorite type, with no opportunity for random entropy of lattice disorder.

Heat and Free Energy of Formation of LiOH. — The most reliable value of the heat of solution of lithium metal is that of Moers,¹⁸ who determined the heat of solution, in the presence of a large excess of water, at 9.8, 12.2 and 18.2°. Disregarding the 9.8° value, which was less accurate than the others because a very small amount of lithium was employed, we have used Rossini's values^{14,15} for the integral heats of dilu-

(9) H. R. de Forcrand, Ann. chim. phys., [8] 15, 433 (1908).

(10) D. D. Wagman, J. E. Kilpatrick, W. J. Taylor, K. S. Pitzer and F. D. Rossini, J. Research Natl. Bur. Standards, 34, 143 (1945).

(11) A. R. Gordon, J. Chem. Phys., 2, 65 (1934).

(12) J. M. Bijvoet and A. Karsen, Rec. trav. chim., 43, 680 (1924).

(13) K. Moers, Z. anorg. aligem. Chem., 113, 179 (1920).
 (14) F. D. Rossivi, J. Research Natil. Bur. of Standards, 6, 791 (1931).

(15) F. D. Rossini, ibid., 7, 47 (1931).

⁽⁸⁾ C. H. Shomate, THIS JOURNAL, 66, 928 (1944).

tion of LiOH at 18° and for the partial molal heat capacities of LiOH and of H₂O to convert Moers' 12.2 and 18.2 results to the reaction process

Li(crystalline) +
$$401H_2O$$
 (liquid) =
LiOH.400 H₂O (solution) + $\frac{1}{_2}H_2(gas)$ (7)

for which we obtained

 $\Delta H_{12,2} = -52,517 \text{ cal.}; \ \Delta C_{p} = -51.50 \text{ cal./deg.}$ $\Delta H_{18,2} = -52,826 \text{ cal.}; \ \Delta H_{15,0} = -52,661 \text{ cal.}$

In using Moers' data, a correction of -11 cal. has been applied to each of his measured ΔH 's to convert his data to the defined thermochemical calorie.5

The value of ΔC_p for reaction 7 can also be calculated from the difference in the heats of solutions of LiOH at 15 and at 25°, as measured by de Forcrand^{9,16} and by Ueda,¹⁷ respectively, used in conjunction with the heat capacities of Li,¹⁸ of LiOH,⁶ of H₂O (liquid),¹⁹ and of H₂.²⁰ This treatment yields a ΔC_p of -50 ± 4 cal./deg., a value which is in good agreement with the value -51.50 cal./deg. determined directly from Moers' data. It fixes the accuracy of ΔH_{15} obtained from Moers' heats of solution at about 50 cal.

Combining ΔH_{15} for equation 7 with de Forcrand's⁹ corrected value for the reaction

 $LiOH(crystalline) + 400H_2O(liquid) =$

 $LiOH \cdot 400H_2O(solution)$ (8)

namely

 $\Delta H_{15}^0 = -4474 \pm 30$ cal.

and with ΔH_{25}^0 and ΔC_p^0 for the reaction

$$I_{2}(gas) + \frac{1}{2}O_{2}(gas) = H_{2}O(\text{liquid})$$
(9)

$$\Delta H_{25}^{0} = -68,317 \pm 10 \text{ cal.}^{10}$$

$$\Delta C_{p}^{0} = 7.60 \text{ cal./deg.}^{19,20,21}$$

vields

 $Li(crystalline) + \frac{1}{2}H_2(gas) + \frac{1}{2}O_2(gas) =$ LiOH(crystalline) (10)

$$\Delta H_{15}^{0} = -116,580 \pm 90 \text{ cal.}$$
$$\Delta C_{p}^{0} = -0.86 \text{ cal./deg.}$$
$$\Delta H_{25}^{0} = -116,589 \pm 90 \text{ cal.}$$

By use of the entropies of $\rm Li, ^{18}$ $\rm H_{2}, ^{22}$ $\rm O_{2}{}^{21}$ and LiOH,⁶ the following further relationships appropriate to equation 10 are obtained

$$\Delta S_{25}^0 = -36.60 \pm 0.13$$
 e. u.
 $\Delta F_{25}^0 = -105,676 \pm 130$ cal./inole

Heat and Free Energy of Formation of LiOH. H_2O .—From calorimetric measurements of heats of solution of both LiOH and LiOH·H₂O in sufficient water to form a 0.13889 M LiOH solution, Ueda¹⁷ found that

(16) de Forcrand's values were corrected to the current atomic weight of lithium.

- (17) Y. Ueda, J. Chem. Soc. (Japan), 52, 740 (1931); Science (1) 1. Tohoku Imp. Univ., [1] 22, 448 (1933).
 (18) F. Simon and R. C. Swain, Z. physik. Chem., B28, 189 (1935).
- (19) N. S. Osborn, H. H. Stimson and D. C. Ginnings, J. Research
- Natl. Bur. Standards, 23, 197 (1938). (20) C. O. Davis and H. L. Johnston, THIS JOURNAL, 56, 1045
- (1934). (21) H. L. Johnston and M. K. Walker, ibid., 55, 172 (1933).
 - (22) W. F. Giauque, ibid., 52, 4816 (1930).

 $LiOH(crystalline) + H_2O(liquid) =$

$$LiOH \cdot H_2O(crystalline) \quad (11)$$
$$\Delta H_{25}^0 = -4020 = 20 \text{ cal.}$$

Combining this value with ΔH_{25}^{0} for the formation of H_2O (liquid),¹⁰ with ΔH_{25}^{2} for equation 10, and with the entropy of LiOH H₂O⁶ gives $Li(crystalline) + 3/2H_2(gas) + O_2(gas) =$

 $LiOH \cdot H_2O(crystalline)$ (12) $\Delta H_{25}^0 = -188,926 \pm 120$ cal. $\Delta S_{25}^0 = -85.49 \pm 0.15 \text{ e.u.}$ $\Delta F_{25}^0 = -163,437 \pm 160 \text{ cal.}$

Heat and Free Energy of Formation of Li₂O. From de Forcrand's corrected values9,16 for the heats of solution of both Li₂O and LiOH in water, we obtained

 $2\text{LiOH}(\text{crystalline}) = \text{Li}_2O(\text{crystalline}) + \text{H}_2O$ 3)

$$\Delta H_{25}^0 = 22,301 \pm 110 \text{ cal.}$$

Combining this value with those of ΔH_{25}^0 for equations 9 and 10 and with entropies of Li,¹⁸ Li₂O and O₂²¹ yields

$$2\text{Li}(\text{crystalline}) + \frac{1}{2}O_2(\text{gas}) = \text{Li}_2O(\text{crystalline}) \quad (14)$$

$$\Delta H_{25}^{0} = -142,567 \pm 160 \text{ cal.}$$

$$\Delta S_{25}^{0} = -28.85 \pm 0.13 \text{ e. u.}$$

$$\Delta F_{25}^{0} = -133,965 \pm 210 \text{ cal.}$$

Entropy and Heat and Free Energy of Formation of the Lithium Ion.—The free energy of solution of lithium hydroxide to form lithium and hydroxide ions in their standard states is obtained by combining the processes

- (a) $LiOH \cdot H_2O(crystalline) = LiOH \cdot H_2O(satd. solution)$ $\Delta F_{a} = 0$ (at equilibrium)
- (b) $LiOH(crystalline) + H_2O(liquid) = LiOH \cdot H_2O$ (crystalline)

$$\Delta F_{\rm b} = -1070 \pm 3 \, {\rm cal.}^{23}$$

(c) $H_2O(\text{satd. solution}) = H_2O(\text{liquid})$ $\Delta F_{\rm e} = -RT \ln a_1({\rm satd.}) = 103 {\rm cal.}^{24}$

(d) LiOH $H_2O(satd. solution) = Li^+$ (standard state solution) + OH⁻ (standard state solution) + H_2O (satd. solution)

$$\Delta F_{\rm d} = -RT \ln a_2 \,({\rm satd.}) = -1049 \pm 30 \,{\rm cal.}^{24}$$

Addition of reactions (a) to (d) yields

$$LiOH(crystalline) = Li^+ (standard state) + OH^- (standard state)$$
 (15)

$$\Delta F^0 = -2016 \pm 40$$
 col

$$\Delta F_{25}^{26} = -2016 \pm 40 \text{ cal.}$$

$$\Delta H_{25}^{0} = -5076 \pm 30 \text{ cal.}^{26}$$

$$\Delta S_{25}^{0} = -10.26 \pm 0.23 \text{ e.u.}$$

(23) Computed from Ueda's¹⁷ determination of the dissociation pressure of LiOH.H2O at 25° (3.90 mm.) in conjunction with the vapor pressure of pure water at 25° (23.76 mm.) by the relationship $\Delta F = -RT \ln p.$

(24) Computed from Ueda's11 determination of the vapor pressure of water from the saturated solution at 25° (19.97 mm.) in conjunction with the vapor pressure of pure water, since $a_1 = p_1/p_1^0$.

(25) The activity of LiOH in the saturated solution, at 25°, (a2, satd.) is computed as the square of the product of the molality (5.159^{17}) and the activity coefficient γ . The latter value, 0.470 = 0.010, is obtained by extrapolating the data of Harned and Swindells for compositions up to 4 M. Cf. H. S. Harned and F. E. Swindells, THIS JOURNAL, 48, 126 (1926).

(26) Obtained by combining. Ueda's17 calorimetric determination of the heat of solution of LiOH to form a 0.13889 M solution with Rossini's14,15 values of the heat of dilution and the partial molal heat capacities of LiOH and H2O.

When we combine the value of ΔS^0 obtained from equation 15 with our value⁶ for the entropy of LiOH (10.23 \pm 0.05 e.u.) and with that of Latimer, Pitzer and Smith²⁷ for the entropy of the hydroxyl ion (-2.49 \pm 0.06 e.u.) the standard state entropy of the lithium ion is

$$S_{25}^{0}$$
 (Li⁺) = 2.46 ± 0.34 e.u. (16)

This result compares with that, 4.7 ± 1.0 e.u., obtained by Brown and Latimer²⁸ from measurements of Li₂CO₈. Most of the discrepancy may have been due to Brown and Latimer being forced to use the heat of dilution of Li₂SO₄, in their computations, rather than that of Li₂CO₃, which was not available.

We can compute the heat and free energy of formation of the lithium ion in its standard state by combining the ΔH values of reactions 10 and 15 with those of the heat of formation of water¹⁰ and the heat of ionization of water,²⁹ in conjunction with the standard entropies of Li,¹⁸ Li⁺ and H₂.²⁰ The following results are obtained

$$Li(crystalline) + H^{+}(aqueous) = Li^{+}(aqueous) + \frac{1}{2}H_{2}(gas) (17)$$

$$\Delta H_{25}^0 = -66,706 \pm 100 \text{ cal.}$$

$$\Delta S_{25}^0 = 11.37 \pm 0.40 \text{ e.u.}$$

$$\Delta F_{25}^0 = -70,096 \pm 220 \text{ cal.}$$

In the above computations, the heat and free

(27) W. M. Latimer, K. S. Pitzer and W. V. Smith, THIS JOURNAL, 60, 1829 (1938).

(28) O. L. I. Brown and W. M. Latimer, *ibid.*, 58, 2228 (1936).
(29) K. S. Pitzer, *ibid.*, 59, 2365 (1937).

energy of formation of the hydrogen ion in its standard state are taken as zero, in accordance with the usual convention.

Finally, we can compute the standard oxidation potential of lithium from its standard free energy of formation. This computation yields

 $E^0 = 3.0383 \pm 0.0010$ int. volts

Summary

The heat capacity of Li₂O has been measured over the temperature range 16 to 304° K. Graphical integration of the heat capacity curve yields 9.06 ± 0.03 cal./mole/deg. for the entropy at 25°. When the entropies of LiOH and of steam are also considered, the curve yields a ΔS° of 33.70 ± 0.12 e.u. for the dissociation reaction 2LiOH = Li₂O + H₂O(gas). This latter value is in good agreement with the value, 33.85, obtained from the dissociation equilibrium and confirms the application of the third law of thermodynamics to Li₂O.

A table of thermodynamic functions for Li_2O has been prepared for smoothed values of temperature.

Heats and free energies of formation have been computed for LiOH, LiOH \cdot H₂O and Li₂O, by combining their entropies with heat of solution and vapor pressure data.

The standard state entropy of the lithium ion at 25° , has been calculated as 2.46 = 0.34 e.u. and the standard electrode potential of lithium as 3.0383 ± 0.0010 int. volts.

Columbus 10, Ohio

RECEIVED JULY 5, 1950

[Contribution No. 1409 from the Gates and Crellin Laboratories of Chemistry, California Institute of Technology]

Hydrogen Bonding and Relative Adsorption Affinities on Silicic Acid of Certain Derivatives of Diphenylamine and N-Ethylaniline¹

By W. A. Schroeder

Introduction

The chromatographic investigations^{2,3,4} of the products which are formed from diphenylamine and centralite (1,3-diethyl-1,3-diphenylurea) during their action as stabilizers of double base smokeless powder have resulted in the assembling of a detailed body of information on the chromatographic behavior on silicic acid of their nitro and nitroso derivatives and of those of N-ethylaniline. Consideration of the relative adsorption affinities of these compounds showed, however, that there was little evident regularity of behavior and that, for example, increase in the number of substituent or potential "anchoring" groups⁵ was not necessarily accompanied by an increase in adsorption affinity

(1) Presented before the symposium on "The Specificity of Adsorbents," Division of Colloid Chemistry, Houston Meeting of American Chemical Society, March 28, 1950.

(2) W. A. Schroeder, Ann. N. Y. Acad. Sci., 49, 204 (1948).

(3) W. A. Schroeder, E. W. Malmberg, L. L. Fong, K. N. Trueblood.

J. D. Landeri and E. Hoerger, Ind. Eng. Chem., 41, 2818 (1949).
(4) W. A. Schroeder, M. K. Wilson, C. Green, P. E. Wilcox, R. S. Mills and K. N. Trueblood, *ibid.*, 42, 539 (1950).

(5) L. Zechmeister, Am. Scientist, 36, 505 (1948).

as is so often the case, for instance, in the chromatography of the carotenoids.⁶

If one considers the structure of silicic acid, hydrogen bonding between it and amino and nitro compounds might be expected to take place in many ways such as

(6) L. Zechmeister and L. Cholnoky, "Principles and Practice of Chromatography," John Wiley and Sons, Inc., New York, N. Y., 1943, p. 26.